Electronic Warfare and Radar Systems Engineering Handbook

Keywords electronic warfare engineering handbook radar systems warfare and radar systems


Duty cycle (or duty factor) is a measure of the fraction of the time a radar is transmitting. It is important because it relates to peak and average power in the determination of total energy output. This, in turn, ultimately effects the strength of the reflected signal as well as the required power supply capacity and cooling requirements of the transmitter. Although there are exceptions, most radio frequency (RF) measurements are either continuous wave (CW) or pulsed RF. CW RF is uninterrupted RF such as from an oscillator. Amplitude modulated (AM), frequency modulated (FM), and phase modulated (PM) RF are considered CW since the RF is continuously present. The power may vary with time due to modulation, but RF is always present. Pulsed RF, on the other hand, is bursts (pulses) of RF with no RF present between bursts. The most general case of pulsed RF consists of pulses of a fixed pulse width (PW) which come at a fixed time interval, or period, (T). For clarity and ease of this discussion, it is assumed that all RF pulses in a pulse train have the same amplitude. Pulses at a fixed interval of time arrive at a rate or frequency referred to as the pulse repetition frequency (PRF) of so many pulse per second. Pulse repetition interval (PRI) and PRF are reciprocals of each other.

Document identifier
Date published
Document type
technical handbook
Defines standard
Replaced/Superseded by document(s)
Cancelled by
Amended by
File MIME type Size (KB) Language Download
Electronic Warfare and Radar Systems Engineering Handbook.pdf application/pdf   3.95 MB English DOWNLOAD!
File attachments
Cover images


The radar and Electronic Warfare communities generally accept some commonly used notation for the various parameters used in radar and EW calculations. For instance, "P" is almost always power and "G" is almost always gain. Textbooks and reference handbooks will usually use this common notation in formulae and equations. A significant exception is the use of "α" for space loss. Most textbooks don't develop the radar equation to its most usable form as does this reference handbook, therefore the concept of "α" just isn't covered. Subscripts are a different matter. Subscripts are often whatever seems to make sense in the context of the particular formula or equation. For instance, power may be "P", "PT", "Pt", or maybe "P1". In the following list, generally accepted notation is given in the left hand column with no subscripts. Subscripted notation in the indented columns is the notation used in this handbook and the notation often (but not always) used in the EW community.

Visit also